login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208757
Triangle of coefficients of polynomials u(n,x) jointly generated with A208758; see the Formula section.
4
1, 1, 2, 1, 2, 6, 1, 2, 8, 16, 1, 2, 10, 24, 44, 1, 2, 12, 32, 76, 120, 1, 2, 14, 40, 112, 232, 328, 1, 2, 16, 48, 152, 368, 704, 896, 1, 2, 18, 56, 196, 528, 1200, 2112, 2448, 1, 2, 20, 64, 244, 712, 1824, 3840, 6288, 6688, 1, 2, 22, 72, 296, 920, 2584, 6144
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 18 2012
FORMULA
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-2*y*x+2*y*x^2-2*y^2*x^2)/(1-x-2*y*x+2*y*x^2-2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) -2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
EXAMPLE
First five rows:
1;
1, 2;
1, 2, 6;
1, 2, 8, 16;
1, 2, 10, 24, 44;
First five polynomials u(n,x):
1
1 + 2x
1 + 2x + 6x^2
1 + 2x + 8x^2 + 16x^3
1 + 2x + 10x^2 + 24x^3 + 44x^4
From Philippe Deléham, Mar 18 2012: (Start)
(1, 0, -1, 1, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins:
1
1, 0
1, 2, 0
1, 2, 6, 0
1, 2, 8, 16, 0
1, 2, 10, 24, 44, 0
1, 2, 12, 32, 76, 120, 0
1, 2, 14, 40, 112, 232, 328, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208757 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208758 *)
CROSSREFS
Sequence in context: A166350 A357124 A210227 * A361830 A133643 A008305
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
STATUS
approved