login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058645
a(n) = 2^(n-3)*n^2*(n+3).
8
0, 1, 10, 54, 224, 800, 2592, 7840, 22528, 62208, 166400, 433664, 1105920, 2768896, 6823936, 16588800, 39845888, 94699520, 222953472, 520486912, 1205862400, 2774532096, 6343884800, 14422114304, 32614907904, 73400320000
OFFSET
0,3
COMMENTS
a(n) is the number of ways to select a subset of {1,2,...n} and then use the subset as an alphabet to form ordered triples.
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
FORMULA
a(n) = Sum_{k=0..n} k^3 * binomial(n, k): binomial transform of A000578.
G.f.: x*(1+2*x-2*x^2)/(1-2*x)^4. E.g.f.: x*(1+3*x+x^2)*e^(2*x).
A001793(n)*(n+3) = -a(-3-n)*2^(2*n+3) for all n in Z. - Michael Somos, Apr 19 2019
MATHEMATICA
CoefficientList[Series[(x+3x^2+x^3) Exp[x]^2, {x, 0, 20}], x] * Table[n!, {n, 0, 20}]
PROG
(PARI) a(n)=2^(n-3)*n^2*(n+3)
CROSSREFS
First differences are in A084903.
Sequence in context: A267172 A266764 A036600 * A170940 A057586 A213120
KEYWORD
nonn,easy
AUTHOR
Yong Kong (ykong(AT)curagen.com), Dec 26 2000
STATUS
approved