OFFSET
0,3
COMMENTS
a(n) is the number of ways to select a subset of {1,2,...n} and then use the subset as an alphabet to form ordered triples.
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
LINKS
Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
FORMULA
a(n) = Sum_{k=0..n} k^3 * binomial(n, k): binomial transform of A000578.
G.f.: x*(1+2*x-2*x^2)/(1-2*x)^4. E.g.f.: x*(1+3*x+x^2)*e^(2*x).
A001793(n)*(n+3) = -a(-3-n)*2^(2*n+3) for all n in Z. - Michael Somos, Apr 19 2019
MATHEMATICA
CoefficientList[Series[(x+3x^2+x^3) Exp[x]^2, {x, 0, 20}], x] * Table[n!, {n, 0, 20}]
PROG
(PARI) a(n)=2^(n-3)*n^2*(n+3)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yong Kong (ykong(AT)curagen.com), Dec 26 2000
STATUS
approved