The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271748 Number of set partitions of [n] such that 9 is the largest element of the last block. 2
 8280, 29874, 117488, 495408, 2215148, 10419024, 51235748, 262138728, 1389893708, 7611839904, 42937377908, 248865777048, 1478955826268, 8994703967184, 55889046456068, 354251342263368, 2287372272350828, 15026157296580864, 100307242528430228, 679694909468957688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 9,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 9..1000 Wikipedia, Partition of a set Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320). FORMULA G.f.: 2*x^9 *(20160*x^8 -51819984*x^7 +121981810*x^6 -109114599*x^5 +49449082*x^4 -12490518*x^3 +1781452*x^2 -134103*x +4140) / Product_{j=1..8} (j*x-1). a(n) = 36*a(n-1) - 546*a(n-2) + 4536*a(n-3) - 22449*a(n-4) + 67284*a(n-5) - 118124*a(n-6) + 109584*a(n-7) - 40320*a(n-8) for n>17. - Colin Barker, Jan 05 2018 PROG (PARI) Vec(2*x^9*(4140 - 134103*x + 1781452*x^2 - 12490518*x^3 + 49449082*x^4 - 109114599*x^5 + 121981810*x^6 - 51819984*x^7 + 20160*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)) + O(x^40)) \\ Colin Barker, Jan 05 2018 CROSSREFS Column k=9 of A271466. Sequence in context: A188101 A157731 A252581 * A064014 A203881 A145527 Adjacent sequences: A271745 A271746 A271747 * A271749 A271750 A271751 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Apr 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 16:34 EDT 2024. Contains 373334 sequences. (Running on oeis4.)