The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271746 Number of set partitions of [n] such that 7 is the largest element of the last block. 2
406, 1145, 3627, 12521, 46299, 181265, 745107, 3195161, 14220459, 65412065, 309878787, 1507297001, 7508078619, 38208764465, 198238593267, 1046593626041, 5612793712779, 30528112814465, 168152752952547, 936705967782281, 5270538854994939, 29919810501018065 (list; graph; refs; listen; history; text; internal format)
OFFSET
7,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
FORMULA
G.f.: x^7*(720*x^6-122388*x^5+235852*x^4-161681*x^3+50632*x^2-7381*x+406) / Product_{j=1..6} (j*x-1).
From Colin Barker, Jan 04 2018: (Start)
a(n) = 32 + 121*2^(n-7) + 155*3^(n-7) + 5*4^(n-5) + 16*5^(n-7) + 6^(n-7) for n>7.
a(n) = 21*a(n-1) - 175*a(n-2) + 735*a(n-3) - 1624*a(n-4) + 1764*a(n-5) - 720*a(n-6) for n>13.
(End)
MATHEMATICA
LinearRecurrence[{21, -175, 735, -1624, 1764, -720}, {406, 1145, 3627, 12521, 46299, 181265, 745107}, 30] (* Harvey P. Dale, Jun 12 2022 *)
PROG
(PARI) Vec(x^7*(406 - 7381*x + 50632*x^2 - 161681*x^3 + 235852*x^4 - 122388*x^5 + 720*x^6) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)) + O(x^40)) \\ Colin Barker, Jan 04 2018
CROSSREFS
Column k=7 of A271466.
Sequence in context: A132362 A371900 A348185 * A203944 A203937 A203714
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 16:34 EDT 2024. Contains 373334 sequences. (Running on oeis4.)