login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370474
G.f. A(x) satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(3/2)).
5
1, 2, 9, 54, 372, 2778, 21873, 178786, 1502649, 12904524, 112741664, 998871030, 8953443276, 81047485148, 739846170864, 6803054508702, 62954736555836, 585850907166084, 5479077065774682, 51470699845616004, 485456696541512442, 4595280949098247422
OFFSET
0,2
FORMULA
a(n) = Sum{k=0..n} binomial(n,k) * binomial(3*n/2+3*k/2+1,n)/(3*n/2+3*k/2+1).
From Seiichi Manyama, Dec 12 2024: (Start)
G.f. A(x) satisfies:
(1) A(x) = ( 1 + x*A(x)^(5/2)/(1 + x*A(x)^(3/2)) )^2.
(2) A(x) = 1/( 1 - x*A(x)^2/(1 + x*A(x)^(3/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+3*k/2+1, n)/(3*n/2+3*k/2+1));
(PARI) a(n, r=2, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 12 2024
CROSSREFS
Cf. A271469.
Sequence in context: A223943 A371698 A241125 * A089436 A368178 A000168
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 31 2024
STATUS
approved