login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180364
a(n) = sum_{k=0..n} C(n,k)*C(n+k,k)*(2*k+1)^2, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).
2
1, 19, 205, 1839, 14961, 114483, 839917, 5975455, 41524897, 283272723, 1903686093, 12636115407, 83007985425, 540484102707, 3492471392493, 22418010385983, 143062290575937, 908253002030355, 5739641232682957, 36121371405797743, 226475167518421681
OFFSET
0,2
COMMENTS
For any n > 0, we have a(0)+ ... + a(n-1) = n*sum_{k=0}^{n-1} (2*k+1)*C(n-1,k)*C(n+k,k) = n^2*A002002(n). The first equality can be easily deduced, and the second equality holds since both sides satisfy the same recurrence by the Zeilberger algorithm.
Conjecture: The sequence a(n+1)/a(n) (n = 0,1,...) is strictly decreasing to the limit 3+2*sqrt(2), and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 1,2,3,..) is strictly increasing to the limit 1.
LINKS
FORMULA
Recurrence (obtained via the Zeilberger algorithm):
-(n+1)*(2*n^2+10*n+11)*a(n) + (2*n+3)*(6*n^2+18*n-7)*a(n+1) - (n+2)*(2*n^2+2*n-1)*a(n+2) = 0.
a(n) ~ sqrt(8+6*sqrt(2)) * (3+2*sqrt(2))^n * n^(3/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Sep 02 2014
EXAMPLE
a(1) = 19 since sum_{k=0,1} C(1,k)*C(1+k,k)*(2k+1)^2 = 1 + 2*3^2 = 19.
MATHEMATICA
a[n_] := Sum[Binomial[n, k] Binomial[n + k, k] (2 k + 1)^2, {k, 0, n}]
Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 29 2014
STATUS
approved