login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180363
a(n) = Lucas(prime(n)).
8
3, 4, 11, 29, 199, 521, 3571, 9349, 64079, 1149851, 3010349, 54018521, 370248451, 969323029, 6643838879, 119218851371, 2139295485799, 5600748293801, 100501350283429, 688846502588399, 1803423556807921, 32361122672259149, 221806434537978679
OFFSET
1,1
COMMENTS
This is to A030426, Fibonacci(prime(n)), as A000032 (Lucas numbers beginning at 2) is to A000045.
LINKS
A. Aksenov, The Newman phenomenon and Lucas sequence, arXiv:1108.5352 [math.NT], 2011. [Gives factorizations of first 88 terms]
Paula Burkhardt et al., Visual properties of generalized Kloosterman sums, arXiv:1505.00018 [math.NT], 2015.
FORMULA
a(n) = A000032(A000040(n)) = Lucas(prime(n)).
a(n) = A032170(A000040(n)) / A064723(n-1) - 1 for n>1. - Flávio V. Fernandes, Dec 30 2021
EXAMPLE
a(1) = 3 because the 1st prime is 2, and the 2nd Lucas number is A000032(2) = 3.
a(2) = 4 because the 2nd prime is 3, and the 3rd Lucas number is A000032(3) = 4.
a(3) = 11 because the 3rd prime is 5, and the 5th Lucas number is A000032(5) = 11.
MAPLE
A180363 := proc(n) A000032(ithprime(n)) ; end proc: seq(A180363(n), n=1..30) ; # R. J. Mathar, Sep 01 2010
# second Maple program:
a:= n-> (<<1|1>, <1|0>>^ithprime(n). <<2, -1>>)[1, 1]:
seq(a(n), n=1..50); # Alois P. Heinz, Jan 03 2022
MATHEMATICA
LucasL[Prime[Range[30]]] (* Vincenzo Librandi, Dec 01 2015 *)
PROG
(Magma) [Lucas(NthPrime(n)): n in [1..30]]; // Vincenzo Librandi, Dec 01 2015
(Python)
from sympy import lucas, prime
def a(n): return lucas(prime(n))
print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Dec 30 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 31 2010
EXTENSIONS
Entries checked by R. J. Mathar, Sep 01 2010
Edited by N. J. A. Sloane, Nov 28 2011
STATUS
approved