OFFSET
1,1
COMMENTS
LINKS
A. Aksenov, The Newman phenomenon and Lucas sequence, arXiv:1108.5352 [math.NT], 2011. [Gives factorizations of first 88 terms]
Paula Burkhardt et al., Visual properties of generalized Kloosterman sums, arXiv:1505.00018 [math.NT], 2015.
FORMULA
EXAMPLE
MAPLE
A180363 := proc(n) A000032(ithprime(n)) ; end proc: seq(A180363(n), n=1..30) ; # R. J. Mathar, Sep 01 2010
# second Maple program:
a:= n-> (<<1|1>, <1|0>>^ithprime(n). <<2, -1>>)[1, 1]:
seq(a(n), n=1..50); # Alois P. Heinz, Jan 03 2022
MATHEMATICA
LucasL[Prime[Range[30]]] (* Vincenzo Librandi, Dec 01 2015 *)
PROG
(Magma) [Lucas(NthPrime(n)): n in [1..30]]; // Vincenzo Librandi, Dec 01 2015
(Python)
from sympy import lucas, prime
def a(n): return lucas(prime(n))
print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Dec 30 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 31 2010
EXTENSIONS
Entries checked by R. J. Mathar, Sep 01 2010
Edited by N. J. A. Sloane, Nov 28 2011
STATUS
approved