login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141723
Triangle T(n, k) = Sum_{j=0..n} (2*n)!/((2*n-k-j)!*j!*k!), read by rows.
1
1, 3, 4, 11, 28, 24, 42, 156, 225, 160, 163, 792, 1596, 1736, 1120, 638, 3820, 9855, 14400, 13230, 8064, 2510, 17832, 55968, 102520, 122265, 100584, 59136, 9908, 81368, 300482, 661024, 968968, 1005004, 765765, 439296, 39203, 365104, 1549320, 3975440, 6910540, 8653008, 8112104, 5845840, 3294720
OFFSET
0,2
FORMULA
T(n, k) = Sum_{j=0..n} (2*n)!/((2*n-k-j)!*j!*k!).
EXAMPLE
Triangle begins as:
1;
3, 4;
11, 28, 24;
42, 156, 225, 160;
163, 792, 1596, 1736, 1120;
638, 3820, 9855, 14400, 13230, 8064;
2510, 17832, 55968, 102520, 122265, 100584, 59136;
9908, 81368, 300482, 661024, 968968, 1005004, 765765, 439296;
MATHEMATICA
Table[Sum[Multinomial[2*n-k-j, k, j], {j, 0, n}], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma) F:= Factorial; [(&+[F(2*n)/(F(k)*F(j)*F(2*n-k-j)): j in [0..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 28 2021
(Sage) f=factorial; flatten([[sum(f(2*n)/(f(k)*f(j)*f(2*n-k-j)) for j in (0..n)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 28 2021
CROSSREFS
Sequence in context: A198443 A041231 A042129 * A268478 A180363 A100845
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Sep 12 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 28 2021
STATUS
approved