Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Mar 29 2021 01:06:30
%S 1,3,4,11,28,24,42,156,225,160,163,792,1596,1736,1120,638,3820,9855,
%T 14400,13230,8064,2510,17832,55968,102520,122265,100584,59136,9908,
%U 81368,300482,661024,968968,1005004,765765,439296,39203,365104,1549320,3975440,6910540,8653008,8112104,5845840,3294720
%N Triangle T(n, k) = Sum_{j=0..n} (2*n)!/((2*n-k-j)!*j!*k!), read by rows.
%H G. C. Greubel, <a href="/A141723/b141723.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, k) = Sum_{j=0..n} (2*n)!/((2*n-k-j)!*j!*k!).
%e Triangle begins as:
%e 1;
%e 3, 4;
%e 11, 28, 24;
%e 42, 156, 225, 160;
%e 163, 792, 1596, 1736, 1120;
%e 638, 3820, 9855, 14400, 13230, 8064;
%e 2510, 17832, 55968, 102520, 122265, 100584, 59136;
%e 9908, 81368, 300482, 661024, 968968, 1005004, 765765, 439296;
%t Table[Sum[Multinomial[2*n-k-j, k, j], {j,0,n}], {n,0,12}, {k,0,n}]//Flatten
%o (Magma) F:= Factorial; [(&+[F(2*n)/(F(k)*F(j)*F(2*n-k-j)): j in [0..n]]): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 28 2021
%o (Sage) f=factorial; flatten([[sum(f(2*n)/(f(k)*f(j)*f(2*n-k-j)) for j in (0..n)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 28 2021
%K nonn,tabl
%O 0,2
%A _Roger L. Bagula_, Sep 12 2008
%E Edited by _G. C. Greubel_, Mar 28 2021