login
A141725
a(n) = 4^(n+1) - 3.
13
1, 13, 61, 253, 1021, 4093, 16381, 65533, 262141, 1048573, 4194301, 16777213, 67108861, 268435453, 1073741821, 4294967293, 17179869181, 68719476733, 274877906941, 1099511627773, 4398046511101, 17592186044413, 70368744177661
OFFSET
0,2
COMMENTS
Inverse binomial transform yields A003946 with A003946(1)=4 deleted. - R. J. Mathar, Sep 13 2008
Starting with n=1, binary numbers of the form 1X01 where X is an odd number of 1's. - Brad Clardy, Mar 22 2011
Column 4 of A193871. - Omar E. Pol, Aug 22 2011
The Sierpinski square curve is a representation of this sequence, where a(n) is the number squares filled by the Sierpinski (space-filling) square curve. The square footprint expands at a rate of (2^n-1)^2 (A000225)^2. The number of nodes per iteration grows at a rate of (4^n-1)/3 (A002450). See illustration in links. - John Elias, Jul 25 2022
FORMULA
a(n) = 10*A001045(2*n) + A001045(2*n+1).
a(n) = 4*a(n-1) + 9 for n > 0, a(0) = 1.
a(n) = A036563(2*n+2).
G.f.: (1 + 8*x)/((1 - x)*(1 - 4*x)). - R. J. Mathar, Sep 13 2008
a(n) = 4^n - 3, with offset 1. - Omar E. Pol, Aug 22 2011
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1, a(0) = 1, a(1) = 13. - Harvey P. Dale, Sep 25 2011
E.g.f.: exp(4*x) - 3*exp(x). - Elmo R. Oliveira, Nov 15 2023
MAPLE
a:= n-> 4^(n+1)-3: seq(a(n), n=0..25); # Muniru A Asiru, Feb 20 2018
MATHEMATICA
4^(Range[2, 25]-1)-3 (* or *) LinearRecurrence[{5, -4}, {1, 13}, 25] (* or *) NestList[4#+9&, 1, 25] (* Harvey P. Dale, Sep 25 2011 *)
PROG
(Magma) [4^(n+1)-3: n in [0..30]]; // Vincenzo Librandi, Aug 08 2011
(PARI) a(n)=4^(n+1)-3 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..25], n -> 4^(n+1)-3); # Muniru A Asiru, Feb 20 2018
CROSSREFS
Sequence in context: A252970 A047673 A231800 * A279762 A147185 A122885
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 13 2008
EXTENSIONS
Edited by N. J. A. Sloane, Sep 13 2008
More terms from R. J. Mathar, Sep 13 2008
STATUS
approved