OFFSET
0,2
COMMENTS
Starting with n=1, binary numbers of the form 1X01 where X is an odd number of 1's. - Brad Clardy, Mar 22 2011
Column 4 of A193871. - Omar E. Pol, Aug 22 2011
The Sierpinski square curve is a representation of this sequence, where a(n) is the number squares filled by the Sierpinski (space-filling) square curve. The square footprint expands at a rate of (2^n-1)^2 (A000225)^2. The number of nodes per iteration grows at a rate of (4^n-1)/3 (A002450). See illustration in links. - John Elias, Jul 25 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Mattia Fregola, Elementary Cellular Automata Rule 1 generating OEIS sequence A277799, A058896, A141725, A002450
Index entries for linear recurrences with constant coefficients, signature (5,-4).
FORMULA
a(n) = 4*a(n-1) + 9 for n > 0, a(0) = 1.
a(n) = A036563(2*n+2).
G.f.: (1 + 8*x)/((1 - x)*(1 - 4*x)). - R. J. Mathar, Sep 13 2008
a(n) = 4^n - 3, with offset 1. - Omar E. Pol, Aug 22 2011
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1, a(0) = 1, a(1) = 13. - Harvey P. Dale, Sep 25 2011
E.g.f.: exp(4*x) - 3*exp(x). - Elmo R. Oliveira, Nov 15 2023
MAPLE
a:= n-> 4^(n+1)-3: seq(a(n), n=0..25); # Muniru A Asiru, Feb 20 2018
MATHEMATICA
4^(Range[2, 25]-1)-3 (* or *) LinearRecurrence[{5, -4}, {1, 13}, 25] (* or *) NestList[4#+9&, 1, 25] (* Harvey P. Dale, Sep 25 2011 *)
PROG
(Magma) [4^(n+1)-3: n in [0..30]]; // Vincenzo Librandi, Aug 08 2011
(PARI) a(n)=4^(n+1)-3 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..25], n -> 4^(n+1)-3); # Muniru A Asiru, Feb 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 13 2008
EXTENSIONS
Edited by N. J. A. Sloane, Sep 13 2008
More terms from R. J. Mathar, Sep 13 2008
STATUS
approved