The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279762 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k^2-5*k+2)/2). 0
 1, 1, 13, 61, 263, 1094, 4578, 18076, 69815, 262242, 965342, 3480006, 12322360, 42896002, 147062818, 497000146, 1657470977, 5459160063, 17772284155, 57225458626, 182362100816, 575463112191, 1799106136923, 5575063264825, 17130798464652, 52216240087807, 157937816918539, 474197830869573, 1413695306175884, 4185962563381518 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Euler transform of the icosahedral numbers (A006564). LINKS M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] N. J. A. Sloane, Transforms OEIS Wiki, Platonic numbers FORMULA G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k^2-5*k+2)/2). a(n) ~ exp(Zeta'(-1) + 5*Zeta(3) / (8*Pi^2) - Pi^16 / (16796160000*Zeta(5)^3) + Pi^8 * Zeta(3) / (648000*Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + 5*Zeta'(-3)/2 + (-Pi^12/(19440000 * 2^(2/5) * 15^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (21600 * 2^(4/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(4/5) * (15*Zeta(5))^(2/5))) * n^(2/5) + (-Pi^4 / (36 * 2^(1/5) * (15*Zeta(5))^(3/5))) * n^(3/5) + ((5*(15*Zeta(5))^(1/5)) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(9/80) / (2^(11/40) * 5^(31/80) * sqrt(Pi) * n^(49/80)). - Vaclav Kotesovec, Nov 09 2017 MATHEMATICA nmax=29; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k^2 - 5 k + 2)/2), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000335, A006564, A023872. Sequence in context: A047673 A231800 A141725 * A147185 A122885 A257216 Adjacent sequences:  A279759 A279760 A279761 * A279763 A279764 A279765 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 27 04:01 EDT 2022. Contains 354888 sequences. (Running on oeis4.)