OFFSET
0,3
COMMENTS
Euler transform of the icosahedral numbers (A006564).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
OEIS Wiki, Platonic numbers
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k^2-5*k+2)/2).
a(n) ~ exp(Zeta'(-1) + 5*Zeta(3) / (8*Pi^2) - Pi^16 / (16796160000*Zeta(5)^3) + Pi^8 * Zeta(3) / (648000*Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + 5*Zeta'(-3)/2 + (-Pi^12/(19440000 * 2^(2/5) * 15^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (21600 * 2^(4/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(4/5) * (15*Zeta(5))^(2/5))) * n^(2/5) + (-Pi^4 / (36 * 2^(1/5) * (15*Zeta(5))^(3/5))) * n^(3/5) + ((5*(15*Zeta(5))^(1/5)) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(9/80) / (2^(11/40) * 5^(31/80) * sqrt(Pi) * n^(49/80)). - Vaclav Kotesovec, Nov 09 2017
MATHEMATICA
nmax=29; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k^2 - 5 k + 2)/2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 18 2016
STATUS
approved