login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279760
Expansion of Product_{k>=1} 1/(1 - x^(prime(k)^3)).
4
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1
OFFSET
0
COMMENTS
Number of partitions of n into cubes of primes (A030078).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^(prime(k)^3)).
EXAMPLE
a(35) = 1 because we have [27, 8].
For n = 152, there are two solutions: 152 = 5^3 + 3^3 = 19 * 2^3, thus a(152) = 2. This is also the first point where the sequence obtains value larger than one. - Antti Karttunen, Aug 31 2017
MATHEMATICA
nmax = 120; CoefficientList[Series[Product[1/(1 - x^(Prime[k]^3)), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) A279760(n, m=8) = { my(s=0, p); if(!n, 1, for(c=m, n, if((ispower(c, 3, &p)&&isprime(p)), s+=A279760(n-c, c))); (s)); }; \\ Antti Karttunen, Aug 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 18 2016
STATUS
approved