|
|
A141726
|
|
Sawtooth with period length 9: repeat 8, 7, 6, 5, 4, 3, 2, 1, 0.
|
|
2
|
|
|
8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Consider the sequence c(n) = c(n+9) = (10*A000027(2*n) + 3*A000027(2*n+1)) mod 9 = (8n+3) mod 9.
Then a(n) = c(n+3).
Also the continued fraction expansion of (23342+5*sqrt(44403565))/6961.
Also the decimal expansion of 973936900/111111111.
|
|
LINKS
|
Table of n, a(n) for n=1..105.
|
|
FORMULA
|
a(n)= a(n-9). G.f.: -x*(8+7*x+6*x^2+5*x^3+4*x^4+3*x^5+2*x^6+x^7)/((x-1)*(1+x+x^2)*(x^6+x^3+1)).
a(n)=(2/9)*{(-7/2)*(n mod 9)+[(n+1) mod 9] + [(n+2) mod 9] + [(n+3) mod 9] + [(n+4) mod 9]+[(n+5) mod 9]+[(n+6) mod 9]+[(n+7) mod 9]+[(n+8) mod 9]}, with n>=0 [From Paolo P. Lava, Sep 29 2008]
|
|
MATHEMATICA
|
PadRight[{}, 120, Range[8, 0, -1]] (* Harvey P. Dale, Dec 23 2020 *)
|
|
CROSSREFS
|
Cf. A010878.
Sequence in context: A138472 A022964 A023450 * A307339 A031310 A161813
Adjacent sequences: A141723 A141724 A141725 * A141727 A141728 A141729
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Curtz, Sep 13 2008
|
|
EXTENSIONS
|
Index in c-sequence corrected by R. J. Mathar, Sep 11 2009
|
|
STATUS
|
approved
|
|
|
|