login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A180362
Primes of the form k * n^n + 1 with k < n^n.
2
5, 13, 109, 163, 257, 271, 379, 433, 487, 541, 769, 3329, 7681, 7937, 9473, 10753, 11777, 12289, 13313, 14081, 14593, 15361, 17921, 18433, 19457, 22273, 23041, 23297, 25601, 26113, 26881, 30977, 31489, 32257, 36097, 36353, 37501, 37633, 37889, 39937, 40193
OFFSET
1,1
COMMENTS
A result of Heath-Brown shows, on the GRH, that this sequence is infinite; can this be proved unconditionally? The averaged result of Bombieri-Friedlander-Iwaniec does not seem to be strong enough.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proceedings of the London Mathematical Society 64:3 (1992), pp. 265-338.
FORMULA
k * n^n + 1, where k < n^n.
EXAMPLE
a(4) = 109, because 4 * 3^3 + 1 = 109, which is prime, and 4 < 27.
PROG
(PARI) isA180362(n)=my(b=2); while(b^b<n, if(n%(b^b)==1 && n < b^(2*b), return(isprime(n))); b++); 0
CROSSREFS
Sequence in context: A117437 A179089 A106046 * A117527 A228280 A155175
KEYWORD
nonn
AUTHOR
Kevin Batista (kevin762401(AT)yahoo.com), Aug 30 2010, Sep 01 2010
EXTENSIONS
Edited by Charles R Greathouse IV, Sep 01, 2010
STATUS
approved