login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246460
a(n) = (sum_{k=0}^{n-1} (2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^2, where C(n,k) denotes the binomial coefficient n!/(k!(n-k)!).
10
1, 7, 77, 1211, 23009, 489035, 11203765, 270937315, 6825612185, 177559028087, 4739821161173, 129244697791951, 3587524535220001, 101099089948850323, 2886373390151379397, 83343790441133767475, 2430567530705659113545, 71508611747063572974095, 2120357936904537499679125, 63315310358625743871987019
OFFSET
1,2
COMMENTS
Conjecture: a(n) is always an integer.
The author proved this in the latest version of arXiv:1408.5381. - Zhi-Wei Sun, Sep 01 2014
LINKS
FORMULA
Recurrence (obtained via the Zeilberger algorithm):
-n^3*(2*n + 5)*(3*n^2 + 12*n + 11)*a(n) + (2*n + 5)*(105*n^5 + 675*n^4 + 1579*n^3 + 1663*n^2 + 768*n+126)*a(n+1) - (2*n + 1)*(105*n^5 + 900*n^4 + 2929*n^3 + 4448*n^2 + 3048*n + 684)*a(n+2) + (n + 3)^3*(2*n + 1)*(3*n^2 + 6*n + 2)*a(n+3) = 0.
a(n) ~ 2^(1/4) * (17+12*sqrt(2))^n / (8 * Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Aug 27 2014
EXAMPLE
a(2) = 7 since sum_{k=0,1} (2k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 3*3^2 = 28 = 2^2*7.
MAPLE
A246460:=n->add((2*k+1)*binomial(n-1, k)^2*binomial(n+k, k)^2/n^2, k=0..n-1): seq(A246460(n), n=1..20); # Wesley Ivan Hurt, Aug 26 2014
MATHEMATICA
a[n_]:=Sum[(2k+1)*Binomial[n-1, k]^2*Binomial[n+k, k]^2, {k, 0, n-1}]/n^2
Table[a[n], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 26 2014
EXTENSIONS
Typo in cross-reference corrected by Vaclav Kotesovec, Aug 27 2014
STATUS
approved