OFFSET
1,2
COMMENTS
Conjecture: a(n) is always an integer.
The author proved this in the latest version of arXiv:1408.5381. - Zhi-Wei Sun, Sep 01 2014
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..100
Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, arXiv:1408.5381, 2014.
FORMULA
Recurrence (obtained via the Zeilberger algorithm):
-n^3*(2*n + 5)*(3*n^2 + 12*n + 11)*a(n) + (2*n + 5)*(105*n^5 + 675*n^4 + 1579*n^3 + 1663*n^2 + 768*n+126)*a(n+1) - (2*n + 1)*(105*n^5 + 900*n^4 + 2929*n^3 + 4448*n^2 + 3048*n + 684)*a(n+2) + (n + 3)^3*(2*n + 1)*(3*n^2 + 6*n + 2)*a(n+3) = 0.
a(n) ~ 2^(1/4) * (17+12*sqrt(2))^n / (8 * Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Aug 27 2014
EXAMPLE
a(2) = 7 since sum_{k=0,1} (2k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 3*3^2 = 28 = 2^2*7.
MAPLE
A246460:=n->add((2*k+1)*binomial(n-1, k)^2*binomial(n+k, k)^2/n^2, k=0..n-1): seq(A246460(n), n=1..20); # Wesley Ivan Hurt, Aug 26 2014
MATHEMATICA
a[n_]:=Sum[(2k+1)*Binomial[n-1, k]^2*Binomial[n+k, k]^2, {k, 0, n-1}]/n^2
Table[a[n], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 26 2014
EXTENSIONS
Typo in cross-reference corrected by Vaclav Kotesovec, Aug 27 2014
STATUS
approved