login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246461
a(n) = Sum_{k=0..n} ((2k+1)*C(n,k)*C(n+k,k))^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
4
1, 37, 1225, 43397, 1563401, 56309885, 2020496185, 72190600165, 2569004841385, 91095128385485, 3220006254279233, 113505318773615741, 3991330807880182105, 140050346341652428141, 4904787249549605102233, 171480516047539645266725
OFFSET
0,2
COMMENTS
Zhi-Wei Sun noted that for any positive integer n we have Sum_{k=0..n-1} (2k+1)*a(k) = n^4*A246460(n).
LINKS
Zhi-Wei Sun, Two new kinds of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2014-2018.
FORMULA
Recurrence: n^3*(2*n-3)*(4*n^4 - 24*n^3 + 50*n^2 - 42*n + 11)*(6*n^4 - 36*n^3 + 67*n^2 - 39*n - 4)*a(n) = (2*n-1)*(840*n^11 - 10464*n^10 + 53192*n^9 - 137864*n^8 + 172296*n^7 - 19912*n^6 - 226019*n^5 + 271559*n^4 - 92324*n^3 - 42188*n^2 + 39128*n - 8466)*a(n-1) - (2*n-3)*(840*n^11 - 8016*n^10 + 28712*n^9 - 44872*n^8 + 15880*n^7 + 43992*n^6 - 64675*n^5 + 32567*n^4 + 1692*n^3 - 9364*n^2 + 4072*n - 606)*a(n-2) + (n-2)^3*(2*n-1)*(4*n^4 - 8*n^3 + 2*n^2 + 2*n - 1)*(6*n^4 - 12*n^3 - 5*n^2 + 11*n - 6)*a(n-3). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ sqrt(24+17*sqrt(2)) * (17+12*sqrt(2))^n * sqrt(n) / (2*sqrt(2)*Pi^(3/2)). - Vaclav Kotesovec, Aug 27 2014
EXAMPLE
a(1) = 37 since Sum_{k=0..1} ((2k+1)*C(1,k)*C(1+k,k))^2 = 1^2 + (3*2)^2 = 37.
MAPLE
A246461:=n->add(((2*k+1)*binomial(n, k)*binomial(n+k, k))^2, k=0..n): seq(A246461(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
MATHEMATICA
a[n_]:=Sum[((2k+1)*Binomial[n, k]*Binomial[n+k, k])^2, {k, 0, n}]
Table[a[n], {n, 0, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 26 2014
STATUS
approved