login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245769
a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)/(2k-1), where C(n, k) denotes the binomial coefficient n!/(k!*(n-k)!).
8
-1, 1, 7, 25, 87, 329, 1359, 6001, 27759, 132689, 649815, 3242377, 16421831, 84196761, 436129183, 2278835681, 11996748255, 63568974241, 338777252263, 1814623238137, 9763917858359, 52750451120361, 286036294786287, 1556185889290065, 8492182185653327, 46471113779766769
OFFSET
0,3
COMMENTS
Note that a(n) is always an integer since C(n,k)*C(n+k,k) = C(n+k,2k)*C(2k,k), and C(2k,k)/(2k-1) = 2*Catalan(k-1) for k > 0.
Conjecture: The sequence a(n+1)/a(n) (n = 3,4,...) is strictly increasing to the limit 3+2*sqrt(2), and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 5,6,...) is strictly decreasing to the limit 1.
LINKS
Victor J. W. Guo, and Ji-Cai Liu, Proof of a conjecture of Z.-W. Sun on the divisibility of a triple sum, Journal of Number Theory, Volume 156, November 2015, Pages 154-160. Rn is a(n).
Zhi-Wei Sun, A new kind of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2017.
FORMULA
Recurrence (obtained via the Zeilberger algorithm): (n+1)*a(n) - (7*n+15)*a(n+1) + (7*n+13)*a(n+2) - (n+3)*a(n+3) = 0.
a(n) ~ A006318(n)/2 as n tends to the infinity, thus a(n)^(1/n) has the limit 3+2*sqrt(2).
0 = +a(n)*(+a(n+1) -15*a(n+2) +13*a(n+3) -3*a(n+4)) +a(n+1)*(+a(n+1) +50*a(n+2) -34*a(n+3) +13*a(n+4)) +a(n+2)*(-63*a(n+2) +50*a(n+3) -15*a(n+4)) +a(n+3)*(+a(n+3) +a(n+4)) for all n in Z. - Michael Somos, Aug 24 2014
EXAMPLE
a(2) = 7 since sum_{k=0,1,2}C(2,k)*C(2+k,k)/(2k-1) = -1 + 6 + 6/3 = 7.
MATHEMATICA
a[n_]:=Sum[Binomial[n, k]Binomial[n+k, k]/(2k-1), {k, 0, n}]; Table[a[n], {n, 0, 25}]
PROG
(PARI) for(n=0, 25, print1(sum(k=0, n, binomial(n, k)*binomial(n+k, k)/(2*k -1)), ", ")) \\ G. C. Greubel, Aug 05 2018
(Magma) [(&+[Binomial(n, k)*Binomial(n+k, k)/(2*k-1): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Aug 05 2018
CROSSREFS
Sequence in context: A155233 A183914 A279216 * A146933 A155258 A261722
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Aug 24 2014
STATUS
approved