Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Sep 08 2022 08:46:09
%S -1,1,7,25,87,329,1359,6001,27759,132689,649815,3242377,16421831,
%T 84196761,436129183,2278835681,11996748255,63568974241,338777252263,
%U 1814623238137,9763917858359,52750451120361,286036294786287,1556185889290065,8492182185653327,46471113779766769
%N a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)/(2k-1), where C(n, k) denotes the binomial coefficient n!/(k!*(n-k)!).
%C Note that a(n) is always an integer since C(n,k)*C(n+k,k) = C(n+k,2k)*C(2k,k), and C(2k,k)/(2k-1) = 2*Catalan(k-1) for k > 0.
%C Conjecture: The sequence a(n+1)/a(n) (n = 3,4,...) is strictly increasing to the limit 3+2*sqrt(2), and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 5,6,...) is strictly decreasing to the limit 1.
%H Zhi-Wei Sun, <a href="/A245769/b245769.txt">Table of n, a(n) for n = 0..200</a>
%H Victor J. W. Guo, and Ji-Cai Liu, <a href="https://doi.org/10.1016/j.jnt.2015.04.024">Proof of a conjecture of Z.-W. Sun on the divisibility of a triple sum</a>, Journal of Number Theory, Volume 156, November 2015, Pages 154-160. Rn is a(n).
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1408.5381">A new kind of numbers and their arithmetic properties</a>, arXiv:1408.5381 [math.NT], 2017.
%F Recurrence (obtained via the Zeilberger algorithm): (n+1)*a(n) - (7*n+15)*a(n+1) + (7*n+13)*a(n+2) - (n+3)*a(n+3) = 0.
%F a(n) ~ A006318(n)/2 as n tends to the infinity, thus a(n)^(1/n) has the limit 3+2*sqrt(2).
%F 0 = +a(n)*(+a(n+1) -15*a(n+2) +13*a(n+3) -3*a(n+4)) +a(n+1)*(+a(n+1) +50*a(n+2) -34*a(n+3) +13*a(n+4)) +a(n+2)*(-63*a(n+2) +50*a(n+3) -15*a(n+4)) +a(n+3)*(+a(n+3) +a(n+4)) for all n in Z. - _Michael Somos_, Aug 24 2014
%e a(2) = 7 since sum_{k=0,1,2}C(2,k)*C(2+k,k)/(2k-1) = -1 + 6 + 6/3 = 7.
%t a[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]; Table[a[n],{n, 0, 25}]
%o (PARI) for(n=0,25, print1(sum(k=0,n, binomial(n,k)*binomial(n+k,k)/(2*k -1)), ", ")) \\ _G. C. Greubel_, Aug 05 2018
%o (Magma) [(&+[Binomial(n,k)*Binomial(n+k,k)/(2*k-1): k in [0..n]]): n in [0..25]]; // _G. C. Greubel_, Aug 05 2018
%Y Cf. A000108, A006318.
%K sign
%O 0,3
%A _Zhi-Wei Sun_, Aug 24 2014