login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245767
Triangular array read by rows: T(n,k) is the number of transitive relations on {1,2,...,n} that have exactly k reflexive points, n>=0, 0<=k<=n.
2
1, 1, 1, 3, 6, 4, 19, 57, 66, 29, 219, 876, 1428, 1116, 355, 4231, 21155, 44500, 49070, 28405, 6942, 130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527, 6129859, 42909013, 131457522, 228345565, 242894155, 158322528, 58628647, 9535241
OFFSET
0,4
COMMENTS
Row sums give A006905.
Column k=0 is A001035.
T(n,n) = A000798(n).
LINKS
FORMULA
E.g.f.: A(x + exp(y*x) - 1) where A(x) is the e.g.f. for A001035.
EXAMPLE
T(2,1) = 6 because we have: {(1,1)}, {(2,2)}, {(1,1),(1,2)}, {(1,1),(2,1)}, {(2,2),(1,2)}, {(2,2),(2,1)}.
Triangle T(n,k) begins:
1;
1, 1;
3, 6, 4;
19, 57, 66, 29;
219, 876, 1428, 1116, 355;
4231, 21155, 44500, 49070, 28405, 6942;
130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527;
...
MATHEMATICA
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {_, _}][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n+1]] x^n/n!, {n, 0, lg-1}];
CoefficientList[#, y]& /@ (CoefficientList[A[x + Exp[y*x]-1] + O[x]^lg, x]* Range[0, lg-1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jul 31 2014
STATUS
approved