login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307460
Expansion of Product_{k>=1} (1-x^k)^((-1)^k*k^2).
3
1, 1, -3, 6, -4, -15, 54, -87, 63, 79, -405, 912, -1363, 1193, 510, -4900, 12512, -21582, 26512, -16540, -24585, 113682, -255045, 419931, -519210, 377176, 267957, -1703694, 4090424, -7179222, 9895981, -9897664, 3337614, 14790666, -49171217, 100903743
OFFSET
0,3
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^2, g(n) = 1.
LINKS
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 09 2019 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^((-1)^k*k^2)))
CROSSREFS
Product_{k>=1} (1-x^k)^((-1)^k*k^b): A010054 (b=0), A281781 (b=1), this sequence (b=2).
Sequence in context: A067979 A091808 A357235 * A128719 A145691 A245767
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 09 2019
STATUS
approved