login
A357235
Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
3
3, 6, 4, 15, 8, 5, 30, 20, 10, 6, 51, 40, 25, 12, 7, 66, 68, 50, 30, 14, 8, 111, 88, 85, 60, 35, 16, 9, 150, 148, 130, 102, 70, 40, 18, 10, 171, 168, 185, 156, 119, 80, 45, 20, 11, 246, 260, 250, 222, 182, 136, 90, 50, 22, 12, 303, 296, 325, 300, 259, 208, 153, 100, 55, 24, 13
OFFSET
3,1
COMMENTS
Conjecture: the only n-gons that contain non-simple intersections are the 3-gon (triangle), 4-gon (square), and 6-gon (hexagon).
FORMULA
T(n,k) = A357254(n,k) - A357216(n,k) + 1 by Euler's formula.
T(n,0) = n.
T(n,1) = 2n.
Conjectured formula for all columns for n >= 7: T(n,k) = n*k^2 + n.
T(3,k) = A357007(k).
T(4,k) = A357060(k).
T(6,k) = A357197(k).
Conjectured formula for all rows except for n = 3, 4, 6: T(n,k) = n*k^2 + n.
EXAMPLE
The table begins:
3, 6, 15, 30, 51, 66, 111, 150, 171, 246, 303, 312, 435, 510, 543, ...
4, 8, 20, 40, 68, 88, 148, 168, 260, 296, 404, 436, 580, 632, 788, ...
5, 10, 25, 50, 85, 130, 185, 250, 325, 410, 505, 610, 725, 850, 985, ...
6, 12, 30, 60, 102, 156, 222, 300, 390, 468, 606, 708, 870, 1020, 1152, ...
7, 14, 35, 70, 119, 182, 259, 350, 455, 574, 707, 854, 1015, 1190, 1379, ...
8, 16, 40, 80, 136, 208, 296, 400, 520, 656, 808, 976, 1160, 1360, 1576, ...
9, 18, 45, 90, 153, 234, 333, 450, 585, 738, 909, 1098, 1305, 1530, 1773, ...
10, 20, 50, 100, 170, 260, 370, 500, 650, 820, 1010, 1220, 1450, 1700, 1970, ...
11, 22, 55, 110, 187, 286, 407, 550, 715, 902, 1111, 1342, 1595, 1870, 2167, ...
12, 24, 60, 120, 204, 312, 444, 600, 780, 984, 1212, 1464, 1740, 2040, 2364, ...
13, 26, 65, 130, 221, 338, 481, 650, 845, 1066, 1313, 1586, 1885, 2210, 2561, ...
14, 28, 70, 140, 238, 364, 518, 700, 910, 1148, 1414, 1708, 2030, 2380, 2758, ...
15, 30, 75, 150, 255, 390, 555, 750, 975, 1230, 1515, 1830, 2175, 2550, 2955, ...
See the attached text file for further examples.
See A357007, A357060, A357197 for more images of the n-gons.
CROSSREFS
Cf. A357216 (regions), A357254 (edges), A357007 (triangle), A357060 (square), A357197 (hexagon), A007569, A146212.
Sequence in context: A299211 A067979 A091808 * A307460 A128719 A145691
KEYWORD
nonn,tabl
AUTHOR
Scott R. Shannon, Sep 19 2022
STATUS
approved