login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357254
Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of edges in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
3
3, 9, 4, 27, 12, 5, 57, 36, 15, 6, 99, 76, 45, 18, 7, 135, 132, 95, 54, 21, 8, 219, 180, 165, 114, 63, 24, 9, 297, 292, 255, 198, 133, 72, 27, 10, 351, 348, 365, 306, 231, 152, 81, 30, 11, 489, 516, 495, 438, 357, 264, 171, 90, 33, 12, 603, 604, 645, 594, 511, 408, 297, 190, 99, 36, 13
OFFSET
3,1
COMMENTS
Conjecture: the only n-gons that contain non-simple intersections are the 3-gon (triangle), 4-gon (square), and 6-gon (hexagon).
FORMULA
T(n,k) = A357216(n,k) + A357235(n,k) - 1 by Euler's formula.
T(n,0) = n.
T(n,1) = 3n.
Conjectured formula for all columns for n >= 7: T(n,k) = 2n*k^2 + n.
T(3,k) = A357008(k).
T(4,k) = A357061(k).
T(6,k) = A357198(k).
Conjectured formula for all rows except for n = 3, 4, 6: T(n,k) = 2n*k^2 + n.
EXAMPLE
The table begins:
3, 9, 27, 57, 99, 135, 219, 297, 351, 489, 603, 645, 867, 1017, ...
4, 12, 36, 76, 132, 180, 292, 348, 516, 604, 804, 892, 1156, 1284, ...
5, 15, 45, 95, 165, 255, 365, 495, 645, 815, 1005, 1215, 1445, 1695, ...
6, 18, 54, 114, 198, 306, 438, 594, 774, 942, 1206, 1422, 1734, 2034, ...
7, 21, 63, 133, 231, 357, 511, 693, 903, 1141, 1407, 1701, 2023, 2373, ...
8, 24, 72, 152, 264, 408, 584, 792, 1032, 1304, 1608, 1944, 2312, 2712, ...
9, 27, 81, 171, 297, 459, 657, 891, 1161, 1467, 1809, 2187, 2601, 3051, ...
10, 30, 90, 190, 330, 510, 730, 990, 1290, 1630, 2010, 2430, 2890, 3390, ...
11, 33, 99, 209, 363, 561, 803, 1089, 1419, 1793, 2211, 2673, 3179, 3729, ...
12, 36, 108, 228, 396, 612, 876, 1188, 1548, 1956, 2412, 2916, 3468, 4068, ...
13, 39, 117, 247, 429, 663, 949, 1287, 1677, 2119, 2613, 3159, 3757, 4407, ...
14, 42, 126, 266, 462, 714, 1022, 1386, 1806, 2282, 2814, 3402, 4046, 4746, ...
15, 45, 135, 285, 495, 765, 1095, 1485, 1935, 2445, 3015, 3645, 4335, 5085, ...
...
See the attached text file for further examples.
See A356984, A357058, A357196 for images of the n-gons.
CROSSREFS
Cf. A357216 (regions), A357235 (vertices), A357008 (triangle), A357061 (square), A357198 (hexagon), A356984, A357058, A357196, A135565, A344899.
Sequence in context: A143237 A180485 A370464 * A367305 A258580 A021966
KEYWORD
nonn,tabl
AUTHOR
Scott R. Shannon, Sep 20 2022
STATUS
approved