login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246459
a(n) = Sum_{k=0..n} C(n,k)^2*C(2k,k)*(2k+1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
8
1, 7, 55, 465, 4047, 35673, 316521, 2819295, 25173855, 225157881, 2016242265, 18070920255, 162071863425, 1454320387575, 13055422263255, 117237213829953, 1053070838993151, 9461217421304505, 85019389336077225, 764113545253570191, 6868417199986308129
OFFSET
0,2
COMMENTS
Zhi-Wei Sun proved that for any n > 0 we have Sum_{k=0..n-1} a(k) = n^2*A086618(n-1), and (Sum_{k=0..n-1}a(k,x))/n is a polynomial with integer coefficients, where a(k,x) = sum_{j=0..k}C(k,j)^2*C(2j,j)*(2j+1)*x^j.
LINKS
Zhi-Wei Sun, Two new kinds of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2014-2018.
FORMULA
Recurrence (obtained via the Zeilberger algorithm): 9*(n+1)^2*a(n) - (19*n^2+74*n+87)*a(n+1) + (n+3)*(11*n+29)*a(n+2) - (n+3)^2*a(n+3) = 0.
a(n) ~ 3^(2*n+1/2) / Pi. - Vaclav Kotesovec, Aug 27 2014
a(n) = (4*n+3)*A002893(n)/3. - Mark van Hoeij, Nov 12 2023
EXAMPLE
a(2) = 55 since Sum_{k=0,1,2} C(2,k)^2*C(2k,k)(2k+1) = 1 + 8*3 + 6*5 = 55.
MAPLE
A246459:=n->add(binomial(n, k)^2*binomial(2*k, k)*(2*k+1), k=0..n): seq(A246459(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
MATHEMATICA
a[n_]:=Sum[Binomial[n, k]^2*Binomial[2k, k](2k+1), {k, 0, n}]
Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 26 2014
STATUS
approved