login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A246458
Catalan number analogs for A048804, the generalized binomial coefficients for the radical sequence (A007947).
2
1, 1, 1, 5, 7, 7, 11, 143, 715, 2431, 4199, 29393, 52003, 37145, 7429, 215441, 392863, 4321493, 7960645, 58908773, 109402007, 407771117, 762354697, 3811773485, 35830670759, 19293438101, 327988447717, 2483341104143, 4709784852685, 17897182440203, 34062379482967
OFFSET
0,4
COMMENTS
One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from the radical sequence (A007947).
LINKS
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
FORMULA
a(n) = A048804(2n,n) / A007947(n+1).
EXAMPLE
A048804(10,5) = 42 and A007947(6) = 6, so a(5)=42/6=7.
PROG
(Sage)
[(1/(prod(x for x in prime_divisors(n+1))))*prod(prod(x for x in prime_divisors(i)) for i in [1..2*n])/prod(prod(x for x in prime_divisors(i)) for i in [1..n])^2 for n in [0..100]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, Aug 26 2014
STATUS
approved