login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224274 a(n) = binomial(4*n,n)/4. 17
1, 7, 55, 455, 3876, 33649, 296010, 2629575, 23535820, 211915132, 1917334783, 17417133617, 158753389900, 1451182990950, 13298522298180, 122131734269895, 1123787895356412, 10358022441395860, 95615237915961100, 883829035553043580, 8179808679272664720, 75788358475481302185 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In general, binomial(k*n,n)/k = binomial(k*n-1,n-1).

Sequences in the OEIS related to this identity are:

. C(2n,n) = A000984, C(2n,n)/2 = A001700;

. C(3n,n) = A005809, C(3n,n)/3 = A025174;

. C(4n,n) = A005810, C(4n,n)/4 = a(n);

. C(5n,n) = A001449, C(5n,n)/5 = A163456;

. C(6n,n) = A004355, C(6n,n)/6 is not in the OEIS.

Conjecture: a(n) == 1 (mod n^3) iff n is an odd prime.

It is known that a(p) == 1(mod p^3) for prime p >= 3. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

D. Kruchinin and V. Kruchinin, A Generating Function for the Diagonal T_{2n,n} in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.

R. Mestrovic, Lucas’ theorem: its generalizations, extensions and applications (1878-2014), arXiv:1409.3820v1 [math.NT], 2014.

FORMULA

a(n) = binomial(4*n,n)/4.

a(n) = binomial(4*n-1,n-1).

G.f.: A(x) = B'(x)/B(x), where B(x) = 1 + x*B(x)^4 is g.f. of A002293. - Vladimir Kruchinin, Aug 13 2015

From Peter Bala, Oct 08 2015: (Start)

a(n) = 1/2*[x^n] (C(x)^2)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.

exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 22*x^3 + ... is the o.g.f. for A002293.

exp( 2*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 9*x^2 + 52*x^3 + ... is the o.g.f. for A069271. (End)

From Peter Bala, Nov 04 2015: (Start)

With an offset of 1, the o.g.f. equals f(x)*g(x)^3, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A004331 (k = 4). (End)

a(n) = 1/5*[x^n] (1 + x)/(1 - x)^(3*n + 1) = 1/5*[x^n]( 1/C(-x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A227726. - Peter Bala, Jul 12 2016

a(n) ~ 2^(8*n-3/2)*3^(-3*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016

O.g.f.: A(x) = f(x)/(1 - 3*f(x)), where f(x) = series reversion (x/(1 + x)^4) = x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + ... is the o.g.f. of A002293 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022

Right-hand side of the identities (1/3)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+3)*n+k-1,k) = C(4*n,n)/4 and (1/4)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-4)*n+k-1,k) = C(4*n,n)/4, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022

Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(5*n-k-1,2*n-k)*binomial(3*n+k-1,k) = binomial(4*n,n)/4. - Peter Bala, Mar 09 2022

EXAMPLE

For n=2, binomial(4*n,n) = binomial(8,2) = 8*7/2 = 28, so a(2) = 28/4 = 7. - Michael B. Porter, Jul 12 2016

MAPLE

seq(binomial(4*n, n)/4, n=1..17);

MATHEMATICA

Table[Binomial[4 n, n]/4, {n, 30}] (* Vincenzo Librandi, Jun 03 2015 *)

PROG

(PARI) a(n) = binomial(4*n, n)/4; /* Joerg Arndt, Apr 02 2013 */

(Magma) [Binomial(4*n, n) div 4: n in [1..25]]; // Vincenzo Librandi, Jun 03 2015

CROSSREFS

Cf. A001700, A025174, A163456, A002293, A069271, A004331, A005810, A052203, A257633, A262977, A227726.

Sequence in context: A083068 A097189 A049028 * A096951 A113714 A246459

Adjacent sequences:  A224271 A224272 A224273 * A224275 A224276 A224277

KEYWORD

nonn,easy

AUTHOR

Gary Detlefs, Apr 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 08:49 EDT 2022. Contains 356039 sequences. (Running on oeis4.)