login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052203 a(n) = (4n+1)*binomial(4n,n)/(3n+1). 16
1, 5, 36, 286, 2380, 20349, 177100, 1560780, 13884156, 124403620, 1121099408, 10150595910, 92263734836, 841392966470, 7694644696200, 70539987842520, 648045936942300, 5964720367660956, 54991682779774384, 507749884105448600, 4694436188839116720 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Central terms of the triangles in A122366 and A111418. - Reinhard Zumkeller, Aug 30 2006 and Mar 14 2014

a(n) is the number of paths from (0,0) to (4n,n), taking north and east steps while avoiding exactly 2 consecutive north steps. - Shanzhen Gao, Apr 15 2010

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = C(4n+1, n); a(n) is asymptotic to c/sqrt(n)*(256/27)^n with c=0.614... - Benoit Cloitre, Jan 27 2003 [c = 2^(5/2)/(3^(3/2)*sqrt(Pi)) = 0.61421182128... - Vaclav Kotesovec, Feb 14 2019]

G.f.: g^2/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011

G.f.: hypergeom([1/2, 3/4, 5/4], [2/3, 4/3], (256/27)*x). - Robert Israel, Aug 07 2014

D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012

From Peter Bala, Nov 04 2015: (Start)

The o.g.f. equals f(x)*g(x), where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293.

More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A257633 (k = 2), A224274 (k = 3) and A004331 (k = 4). (End)

a(n) = [x^n] 1/(1 - x)^(3*n+2). - Ilya Gutkovskiy, Oct 03 2017

MATHEMATICA

Table[Binomial[4 n + 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)

PROG

(Haskell)

a052203 n = a122366 (2 * n) n -- Reinhard Zumkeller, Mar 14 2014

(Magma) [Binomial(4*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014

(PARI) vector(30, n, n--; (4*n+1)*binomial(4*n, n)/(3*n+1)) \\ Altug Alkan, Nov 05 2015

CROSSREFS

Cf. A002293, A051944, A004331, A005810, A224274, A257633, A262977.

Sequence in context: A201351 A253470 A188899 * A332624 A027331 A357153

Adjacent sequences: A052200 A052201 A052202 * A052204 A052205 A052206

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Jan 28 2000

EXTENSIONS

More terms from James A. Sellers, Jan 31 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)