|
|
A188899
|
|
Third row of array in A187617.
|
|
4
|
|
|
1, 5, 36, 281, 2245, 18061, 145601, 1174500, 9475901, 76455961, 616891945, 4977472781, 40161441636, 324048393905, 2614631600701, 21096536145301, 170220478472105, 1373448758774436, 11081871650713781, 89415697915538545, 721463601671126161, 5821234309893001301, 46969478172465070500, 378980086070257592201, 3057856106268358639861
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..400
N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.
Index entries for linear recurrences with constant coefficients, signature (11,-25,11,-1).
|
|
FORMULA
|
G.f.: (1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1). - Alois P. Heinz, Oct 28 2012
|
|
MAPLE
|
ft:=(m, n)->
2^(m*n/2)*mul( mul(
(cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
gt:=(m, n)->round(evalf(ft(m, n), 300));
tt:=[seq(gt(4, 2*n), n=0..10)];
# second Maple program:
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|11|-25|11>>^n.
<<1, 5, 36, 281>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 28 2012
|
|
MATHEMATICA
|
LinearRecurrence[{11, -25, 11, -1}, {1, 5, 36, 281}, 25] (* Jean-François Alcover, Jun 17 2018 *)
|
|
PROG
|
(PARI) x='x+O('x^200); Vec((1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1)) \\ Altug Alkan, Mar 23 2016
|
|
CROSSREFS
|
Bisection (odd part) of A005178. - Alois P. Heinz, Oct 28 2012
Sequence in context: A327091 A201351 A253470 * A052203 A332624 A027331
Adjacent sequences: A188896 A188897 A188898 * A188900 A188901 A188902
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Apr 13 2011
|
|
STATUS
|
approved
|
|
|
|