|
|
A224273
|
|
Decimal expansion of Baxter's four-coloring constant.
|
|
3
|
|
|
1, 4, 6, 0, 9, 9, 8, 4, 8, 6, 2, 0, 6, 3, 1, 8, 3, 5, 8, 1, 5, 8, 8, 7, 3, 1, 1, 7, 8, 4, 6, 0, 5, 9, 6, 9, 7, 0, 3, 8, 9, 3, 1, 3, 5, 5, 8, 0, 7, 4, 6, 1, 7, 8, 8, 2, 0, 5, 7, 7, 5, 4, 3, 4, 4, 4, 1, 5, 2, 1, 3, 5, 5, 8, 8, 5, 7, 3, 1, 4, 4, 0, 7, 7, 6, 5, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The constant is named after Australian physicist Rodney James Baxter. - Amiram Eldar, Aug 13 2020
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 413.
|
|
LINKS
|
|
|
FORMULA
|
Equals 1/Product_{n>=1} (1-1/(3n-1)^2) = 3*Gamma(1/3)^3/(4*Pi^2).
Equals Sum_{k>=0} binomial(-1/3, k)^2. - Gerry Martens, Jul 24 2023
|
|
EXAMPLE
|
1.46099848620631835815887311784605969703893135580746178820577543...
|
|
MATHEMATICA
|
RealDigits[3 Gamma[1/3]^3/(4 Pi^2), 10, 90][[1]]
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|