login
A004117
Numerators of expansion of (1-x)^(-1/3).
8
1, 1, 2, 14, 35, 91, 728, 1976, 5434, 135850, 380380, 1071980, 9111830, 25933670, 74096200, 637227320, 1832028545, 5280552865, 137294374490, 397431084050, 1152550143745, 10043651252635, 29217894553120, 85112997176480
OFFSET
0,3
COMMENTS
For n >= 1, a(n) is also the numerator of beta(n+1/3,2/3)*sqrt(27)/(2*Pi). - Groux Roland, May 17 2011
LINKS
Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 93.
FORMULA
(1/n!) * 3^A054861(n) * Product_{k=0..n-1} (3k+1). - Ralf Stephan, Mar 13 2004
Numerators in (1-3t)^(-1/3) = 1 + t + 2*t^2 + (14/3)*t^3 + (35/3)*t^4 + (91/3)*t^5 + (728/9)*t^6 + (1976/9)*t^7 + (5434/9)*t^8 + ... = 1 + t + 4*t^2/2! + 28*t^3/3! + 280*t^4/4! + 3640*t^5/5! + 58240*t^6/6! + ... = e.g.f. for triple factorials A007559 (cf. A094638). - Tom Copeland, Dec 04 2013
MATHEMATICA
Table[Numerator[Binomial[-1/3, n] (-1)^n], {n, 0, 40}] (* Vincenzo Librandi, Jun 13 2012 *)
PROG
(PARI) a(n)=prod(k=1, n, 3*k-2)/n!*3^sum(k=1, n, valuation(k, 3))
KEYWORD
nonn
EXTENSIONS
Typo in formula fixed by Pontus von Brömssen, Nov 25 2008
STATUS
approved