OFFSET
1,2
COMMENTS
There is a 13-state finite automaton that accepts the Zeckendorf expansions of the members of this sequence. - Jeffrey Shallit, May 03 2023
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..1000
Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023.
Rémy Sigrist, PARI program for A330672
Wikipedia, Golden ratio base
EXAMPLE
The first terms, alongside their base phi representation, are:
n a(n) phi(a(n))
-- ---- -------------------------
1 0 0.0
2 2 10.01
3 14 100100.001001
4 36 10010000.00001001
5 38 10010010.01001001
6 94 1001000000.0000001001
7 96 1001000010.0100001001
8 246 100100000000.000000001001
9 248 100100000010.010000001001
10 260 100100100100.001001001001
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Apr 23 2020
STATUS
approved