The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004114 Number of trees with n nodes and 2-colored internal (non-leaf) nodes. (Formerly M1422) 18
 1, 1, 1, 2, 5, 12, 33, 98, 305, 1002, 3424, 12016, 43230, 158516, 590621, 2230450, 8521967, 32889238, 128064009, 502590642, 1986357307, 7900377892, 31602819524, 127076645038, 513419837168, 2083414420394, 8488377206876, 34712566540014, 142443837953632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503. Errata: Vol. A 41 (1986), p. 325. FORMULA G.f.: 1+B(x)-x*B(x)-B(x)^2/2+B(x^2)/2 where B(x) is g.f. of A004113. - Christian G. Bower, Dec 15 1999 a(n) ~ c * d^n / n^(5/2), where d = 4.49415643203339504537343052... (same as for A004113), c = 0.31497820931312537077... . - Vaclav Kotesovec, Sep 12 2014 MATHEMATICA max = 28; etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n ]; b]; bb = etr[A004113]; A004113[n_] := If[n <= 1, n, 2*bb[n - 1]]; b[x_] := Sum[A004113[n] x^n, {n, 1, max}]; f[x_] := Sum[a[n] x^n, {n, 0, max}]; a[0] = a[1] = a[2] = 1; coes = CoefficientList[ Series[f[x] - (1 + b[x] - x*b[x] - b[x]^2/2 + b[x^2]/2), {x, 0, max}], x]; Table[a[n], {n, 0, max}] /. Solve[Thread[coes == 0]][[1]] (* Jean-François Alcover, Jan 29 2013, after Alois P. Heinz *) CROSSREFS Cf. A004113, A052316, A052317. Sequence in context: A225616 A186739 A266292 * A208957 A209051 A209216 Adjacent sequences:  A004111 A004112 A004113 * A004115 A004116 A004117 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms, and new description from Christian G. Bower, Dec 15 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 12:34 EDT 2022. Contains 356026 sequences. (Running on oeis4.)