login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052316
Number of labeled rooted trees with n nodes and 2-colored internal (non-leaf) nodes.
3
1, 4, 30, 344, 5370, 106452, 2562182, 72592816, 2367054450, 87320153900, 3595646533182, 163492924997448, 8136172620013802, 439858024910227588, 25670670464821310070, 1608575860476990991712, 107716675117341985862370
OFFSET
1,2
FORMULA
Divides by 2n and shifts left under exponential transform.
E.g.f.: -x-LambertW(-2*x*exp(-x)). - Vladeta Jovovic, Sep 17 2003
a(n) = sum(j=1..n, j^(n-1)*2^j*(-1)^(n-j)*binomial(n,j)), n>1, a(1)=1. - Vladimir Kruchinin, Jan 24 2012
a(n) ~ sqrt(1+LambertW(-exp(-1)/2)) * n^(n-1) / (exp(n)*(-LambertW(-exp(-1)/2))^n). - Vaclav Kotesovec, Oct 05 2013
MATHEMATICA
a[n_] := Sum[j^(n-1)*2^j*(-1)^(n-j)*Binomial[n, j], {j, 1, n}]; a[1] = 1; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
PROG
(Maxima) a(n):=if n=1 then 1 else sum(j^(n-1)*2^j*(-1)^(n-j)*binomial(n, j), j, 1, n); /* Vladimir Kruchinin, Jan 24 2012 */
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Dec 15 1999
STATUS
approved