login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379936
E.g.f. A(x) satisfies A(x) = 1/( exp(-x*A(x)^(1/2)) - x )^2.
0
1, 4, 30, 344, 5400, 108492, 2667952, 77811120, 2629399680, 101122817300, 4363964377344, 208925612290056, 10992411683169280, 630611992509716700, 39182624685283891200, 2621745777377998537568, 187969244952968687812608, 14377545994804829244970020
OFFSET
0,2
FORMULA
E.g.f.: ( (1/x) * Series_Reversion( x*exp(-x)/(1+x) ) )^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A088690.
a(n) = 2 * n! * Sum_{k=0..n} (n+2)^(k-1) * binomial(n+2,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*exp(-x)/(1+x))/x)^2))
(PARI) a(n) = 2*n!*sum(k=0, n, (n+2)^(k-1)*binomial(n+2, n-k)/k!);
CROSSREFS
Cf. A088690.
Sequence in context: A370931 A209440 A052316 * A089918 A371041 A132622
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 06 2025
STATUS
approved