login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088690
E.g.f.: A(x) = f(x*A(x)), where f(x) = (1+x)*exp(x).
11
1, 2, 11, 106, 1489, 27696, 643579, 17973488, 586899009, 21953140480, 925890264331, 43480125312768, 2250352192663249, 127280062346049536, 7811329076598534075, 517016126622623635456, 36713034605774835974401, 2784127167066690618458112
OFFSET
0,2
COMMENTS
Radius of convergence of A(x): r = tau^2*exp(-tau) = 0.20588... and A(r) = (1+tau)*exp(tau), where tau=(sqrt(5)-1)/2 and r = limit a(n)/a(n+1)*n as n->infinity.
LINKS
FORMULA
a(n) = n! * [x^n] ((1+x)*exp(x))^(n+1)/(n+1).
a(n) = Sum_{k=1..n} n^(k-2)*n!/k!*binomial(n-1,k-1) (offset 1). - Vladeta Jovovic, Jun 17 2006
E.g.f.: A(x) = (1/x)*series_reversion(x*exp(-x)/(1+x)). - Paul D. Hanna, Jun 17 2006
E.g.f.: B(x)/(1-x*B(x)), where B(x) is e.g.f. for A052873(). - Vladeta Jovovic, Jun 18 2006
a(n) ~ 5^(-1/4) * ((1+sqrt(5))/2)^(2*n+2) * exp((sqrt(5) - 1 - (3 - sqrt(5))*n)/2) * n^(n-1). - Vaclav Kotesovec, Jan 24 2014
a(n) = n!*hypergeom([-n], [2], -n-1). - Peter Luschny, Apr 20 2016
MAPLE
a := n -> n!*simplify(hypergeom([-n], [2], -n-1)):
seq(a(n), n=0..15); # Peter Luschny, Apr 20 2016
MATHEMATICA
CoefficientList[1/x*InverseSeries[Series[x*E^(-x)/(1+x), {x, 0, 21}], x], x]*Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2014 *)
PROG
(PARI) a(n)=n!*polcoeff(((1+x)*exp(x))^(n+1)+x*O(x^n), n, x)/(n+1)
CROSSREFS
Sequence in context: A351331 A278070 A292428 * A118805 A198001 A207155
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 06 2003
STATUS
approved