login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088693 E.g.f: A(x) = f(x*A(x)^2), where f(x) = (1+3*x)*exp(x). 2
1, 4, 71, 2434, 126117, 8804776, 775425427, 82565249670, 10319537275913, 1481520436347628, 240291243489544191, 43458295155840595306, 8672066947756086825325, 1892794863486905965709136, 448582856421716543783775947, 114720816495997657177701763246 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Radius of convergence of A(x): r = (2/27)*exp(-1/3) = 0.053076..., where A(r) = (3/2)*exp(1/6) and r = limit a(n)/a(n+1)*(n+1) as n->infinity. Radius of convergence is from a general formula yet unproved.
LINKS
FORMULA
a(n) = n! * [x^n] ((1+3*x)*exp(x))^(2*n+1)/(2*n+1).
a(n) ~ 3^(3*n+2) * n^(n-1) / (sqrt(7) * 2^(n+2) * exp(2*n/3-1/6)). - Vaclav Kotesovec, Jan 24 2014
MATHEMATICA
Table[n!*SeriesCoefficient[((1+3*x)*E^x)^(2*n+1)/(2*n+1), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 24 2014 *)
PROG
(PARI) a(n)=n!*polcoeff(((1+3*x)*exp(x))^(2*n+1)+x*O(x^n), n, x)/(2*n+1)
CROSSREFS
Sequence in context: A162135 A047939 A354859 * A322397 A333543 A262235
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 07 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 21:48 EDT 2024. Contains 375929 sequences. (Running on oeis4.)