login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088689
Jacobsthal numbers modulo 3.
4
0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1
OFFSET
0,5
COMMENTS
Period 6 = A175286(3).
LINKS
M. E. Muldoon and A. A. Ungar, Beyond Sin and Cos, Mathematics Magazine, 69,1,(1996).
FORMULA
E.g.f.: exp(x) - exp(-x/2)*cos(sqrt(3)*x/2) - 3*exp(x/2)*sin(sqrt(3)*x/2)/sqrt(3);
E.g.f.: F(1, 3, 1, x) + F(1, 3, 2, x) + F(1, 6, 4, x) + F(1, 6, 5, x);
a(n) = a(n-6), with a(0)=0, a(1)=a(2)=1, a(3)=0, a(4)=a(5)=2;
a(n) = 1 - cos(2*Pi*n/3) - 3*sin(Pi*n/3)/3.
a(n) = A001045(n) mod 3.
G.f.: x*(1+2*x^3)/(1-x+x^2-x^3+x^4-x^5); a(n)=a(n-1)-a(n-2)+a(n-3)-a(n-4)+a(n-5). - Paul Barry, Jul 27 2005
a(n) = ( n * floor( 3(n+1)/2 ) - 2n ) mod 3. - Wesley Ivan Hurt, Oct 13 2013
MAPLE
A088689:=n->(n*floor(3*(n+1)/2) - 2*n) mod 3; seq(A088689(k), k=0..70); # Wesley Ivan Hurt, Oct 13 2013
MATHEMATICA
Table[Mod[n*Floor[3(n+1)/2] - 2n, 3], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 13 2013 *)
LinearRecurrence[{1, -1, 1, -1, 1}, {0, 1, 1, 0, 2}, 120] (* Harvey P. Dale, Apr 09 2020 *)
PROG
(PARI) a(n)=[0, 1, 1, 0, 2, 2][n%6+1] \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A124210 A287447 A110568 * A076898 A174294 A089385
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 06 2003
STATUS
approved