The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089385 Expansion of Product_{k>0} (1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)) in powers of x. 1
 1, 1, 0, 1, -1, -1, 1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 1, 1, -1, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, -1, 0, 1, 0, 1, -1, 0, 0, 0, 1, 1, 0, 1, -1, -1, 1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 2, 2, 0, 1, -1, -1, 0, -1, 1, 1, 0, 0, -1, -1, 0, 0, 2, 1, -1, 1, -2, -1, 0, -1, 1, 1, -1, 1, -1, -1, 0, -1, 2, 2, 0, 1, -2, -2, 1, -2, 1, 1, 0, 1, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,65 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). |a(n)| < 2 if n < 64. A089385 and A000041 have the same parity. - Vladeta Jovovic, Dec 31 2003 LINKS Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(1/24) * eta(q^2)^2 * eta(q^4) / (eta(q) * eta(q^8)) in powers of q. - Michael Somos, Sep 30 2011 Expansion of f(x) * chi(x^2) = psi(x) * chi(-x^4) = phi(-x^4) * chi(x) where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 30 2011 G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)). - Michael Somos, Sep 30 2011 G.f.: Product_{k>=1} Sum_{n>=0} b(n)*x^(kn), where b(n)=-1 if n is congruent to 2, 3, 4, or 5 modulo 8, b(n)=+1 otherwise. G.f.: Product_{k>0} (1-x^k)*(1+x^k)^2/(1+x^(4*k)). - Vladeta Jovovic, Dec 31 2003 Euler transform of period 8 sequence [1, -1, 1, -2, 1, -1, 1, -1, ...]. - Vladeta Jovovic, Aug 20 2004 A040051(n) == a(n) (mod 2). EXAMPLE 1 + x + x^3 - x^4 - x^5 + x^6 - x^7 - x^12 - x^13 - x^14 + x^16 + ... 1/q + q^23 + q^71 - q^95 - q^119 + q^143 - q^167 - q^287 - q^311 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ Product[ (1 + x^k) (1 - x^(2 k)) / (1 + x^(4 k)), {k, n}], {x, 0, n}]  (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ -x, x] / QPochhammer[ -x^4, x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}] Product[ 1 + x^k, {k, 2, n, 4}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x] Product[ 1 + x^k, {k, 2, n, 4}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x^2, x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] EllipticTheta[ 3, 0, -x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 3, 0, -x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ 1/2 Product[ 1 + (-x^4)^k, {k, 1, n/4, 2}] EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n + 1/8}] (* Michael Somos, Sep 30 2011 *) a[ n_] := SeriesCoefficient[ 1/2 QPochhammer[ x^4, x^8] EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n + 1/8}] (* Michael Somos, Sep 30 2011 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)), n))} /* Michael Somos, Sep 30 2011 */ CROSSREFS Cf. A040051. Sequence in context: A088689 A076898 A174294 * A124407 A294624 A290531 Adjacent sequences:  A089382 A089383 A089384 * A089386 A089387 A089388 KEYWORD sign,easy AUTHOR David S. Newman, Dec 28 2003 EXTENSIONS More terms from Vladeta Jovovic, Dec 31 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 08:25 EDT 2020. Contains 336201 sequences. (Running on oeis4.)