login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089385
Expansion of Product_{k>0} (1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)) in powers of x.
1
1, 1, 0, 1, -1, -1, 1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 1, 1, -1, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, -1, 0, 1, 0, 1, -1, 0, 0, 0, 1, 1, 0, 1, -1, -1, 1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 2, 2, 0, 1, -1, -1, 0, -1, 1, 1, 0, 0, -1, -1, 0, 0, 2, 1, -1, 1, -2, -1, 0, -1, 1, 1, -1, 1, -1, -1, 0, -1, 2, 2, 0, 1, -2, -2, 1, -2, 1, 1, 0, 1, -2
OFFSET
0,65
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
|a(n)| < 2 if n < 64.
A089385 and A000041 have the same parity. - Vladeta Jovovic, Dec 31 2003
LINKS
FORMULA
Expansion of q^(1/24) * eta(q^2)^2 * eta(q^4) / (eta(q) * eta(q^8)) in powers of q. - Michael Somos, Sep 30 2011
Expansion of f(x) * chi(x^2) = psi(x) * chi(-x^4) = phi(-x^4) * chi(x) where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 30 2011
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)). - Michael Somos, Sep 30 2011
G.f.: Product_{k>=1} Sum_{n>=0} b(n)*x^(kn), where b(n)=-1 if n is congruent to 2, 3, 4, or 5 modulo 8, b(n)=+1 otherwise.
G.f.: Product_{k>0} (1-x^k)*(1+x^k)^2/(1+x^(4*k)). - Vladeta Jovovic, Dec 31 2003
Euler transform of period 8 sequence [1, -1, 1, -2, 1, -1, 1, -1, ...]. - Vladeta Jovovic, Aug 20 2004
A040051(n) == a(n) (mod 2).
EXAMPLE
1 + x + x^3 - x^4 - x^5 + x^6 - x^7 - x^12 - x^13 - x^14 + x^16 + ...
1/q + q^23 + q^71 - q^95 - q^119 + q^143 - q^167 - q^287 - q^311 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 + x^k) (1 - x^(2 k)) / (1 + x^(4 k)), {k, n}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ -x, x] / QPochhammer[ -x^4, x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}] Product[ 1 + x^k, {k, 2, n, 4}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x] Product[ 1 + x^k, {k, 2, n, 4}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x^2, x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] EllipticTheta[ 3, 0, -x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 3, 0, -x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ 1/2 Product[ 1 + (-x^4)^k, {k, 1, n/4, 2}] EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n + 1/8}] (* Michael Somos, Sep 30 2011 *)
a[ n_] := SeriesCoefficient[ 1/2 QPochhammer[ x^4, x^8] EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n + 1/8}] (* Michael Somos, Sep 30 2011 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)), n))} /* Michael Somos, Sep 30 2011 */
CROSSREFS
Cf. A040051.
Sequence in context: A088689 A076898 A174294 * A124407 A294624 A290531
KEYWORD
sign,easy
AUTHOR
David S. Newman, Dec 28 2003
EXTENSIONS
More terms from Vladeta Jovovic, Dec 31 2003
STATUS
approved