login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089383
Number of peaks at even level in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the axis) from (0,0) to (2n+4,0).
2
1, 8, 49, 280, 1569, 8752, 48833, 272976, 1529441, 8589176, 48342449, 272640680, 1540495553, 8718956768, 49423735553, 280551815456, 1594568513857, 9073566717800, 51686272315569, 294711466792120, 1681938025818081, 9606920311565328, 54915241962566849, 314131983462253680
OFFSET
0,2
COMMENTS
Partial sums of A026002.
LINKS
FORMULA
G.f.: (1-z-q)^2/(4*z^2*(1-z)*q), where q = sqrt(1-6*z+z^2).
Recurrence: (n+2)*n^2*a(n) = (n+1)*(7*n^2+4*n+1)*a(n-1) - (7*n^2+10*n+4)*n * a(n-2) + (n-1)*(n+1)^2*a(n-3). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(1632+1154*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 24 2012
EXAMPLE
a(0) = 1 because the paths HH, HUD, UDH, UHD, UDUD and U(UD)D from (0,0) to (4,0) have only one peak at an even level (shown between parentheses).
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])^2/(4*x^2*(1-x)* Sqrt[1-6*x+x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
PROG
(PARI) x='x+O('x^66); q = sqrt(1-6*x+x^2); Vec((1-x-q)^2/(4*x^2*(1-x)*q)) \\ Joerg Arndt, May 10 2013
CROSSREFS
Cf. A006318.
Sequence in context: A005059 A026719 A026774 * A351128 A200660 A028443
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 28 2003
STATUS
approved