login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of peaks at even level in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the axis) from (0,0) to (2n+4,0).
2

%I #13 Jul 29 2017 01:09:20

%S 1,8,49,280,1569,8752,48833,272976,1529441,8589176,48342449,272640680,

%T 1540495553,8718956768,49423735553,280551815456,1594568513857,

%U 9073566717800,51686272315569,294711466792120,1681938025818081,9606920311565328,54915241962566849,314131983462253680

%N Number of peaks at even level in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the axis) from (0,0) to (2n+4,0).

%C Partial sums of A026002.

%H Vincenzo Librandi, <a href="/A089383/b089383.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: (1-z-q)^2/(4*z^2*(1-z)*q), where q = sqrt(1-6*z+z^2).

%F Recurrence: (n+2)*n^2*a(n) = (n+1)*(7*n^2+4*n+1)*a(n-1) - (7*n^2+10*n+4)*n * a(n-2) + (n-1)*(n+1)^2*a(n-3). - _Vaclav Kotesovec_, Oct 24 2012

%F a(n) ~ sqrt(1632+1154*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 24 2012

%e a(0) = 1 because the paths HH, HUD, UDH, UHD, UDUD and U(UD)D from (0,0) to (4,0) have only one peak at an even level (shown between parentheses).

%t CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])^2/(4*x^2*(1-x)* Sqrt[1-6*x+x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 24 2012 *)

%o (PARI) x='x+O('x^66); q = sqrt(1-6*x+x^2); Vec((1-x-q)^2/(4*x^2*(1-x)*q)) \\ _Joerg Arndt_, May 10 2013

%Y Cf. A006318.

%K nonn

%O 0,2

%A _Emeric Deutsch_, Dec 28 2003