login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Jacobsthal numbers modulo 3.
4

%I #29 Dec 14 2023 05:15:51

%S 0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,

%T 2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,

%U 1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1

%N Jacobsthal numbers modulo 3.

%C Period 6 = A175286(3).

%H M. E. Muldoon and A. A. Ungar, <a href="http://www.jstor.org/stable/2691389">Beyond Sin and Cos</a>, Mathematics Magazine, 69,1,(1996).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1).

%F E.g.f.: exp(x) - exp(-x/2)*cos(sqrt(3)*x/2) - 3*exp(x/2)*sin(sqrt(3)*x/2)/sqrt(3);

%F E.g.f.: F(1, 3, 1, x) + F(1, 3, 2, x) + F(1, 6, 4, x) + F(1, 6, 5, x);

%F a(n) = a(n-6), with a(0)=0, a(1)=a(2)=1, a(3)=0, a(4)=a(5)=2;

%F a(n) = 1 - cos(2*Pi*n/3) - 3*sin(Pi*n/3)/3.

%F a(n) = A001045(n) mod 3.

%F G.f.: x*(1+2*x^3)/(1-x+x^2-x^3+x^4-x^5); a(n)=a(n-1)-a(n-2)+a(n-3)-a(n-4)+a(n-5). - _Paul Barry_, Jul 27 2005

%F a(n) = ( n * floor( 3(n+1)/2 ) - 2n ) mod 3. - _Wesley Ivan Hurt_, Oct 13 2013

%p A088689:=n->(n*floor(3*(n+1)/2) - 2*n) mod 3; seq(A088689(k), k=0..70); # _Wesley Ivan Hurt_, Oct 13 2013

%t Table[Mod[n*Floor[3(n+1)/2] - 2n, 3], {n,0,100}] (* _Wesley Ivan Hurt_, Oct 13 2013 *)

%t LinearRecurrence[{1,-1,1,-1,1},{0,1,1,0,2},120] (* _Harvey P. Dale_, Apr 09 2020 *)

%o (PARI) a(n)=[0, 1, 1, 0, 2, 2][n%6+1] \\ _Charles R Greathouse IV_, Oct 16 2015

%K easy,nonn

%O 0,5

%A _Paul Barry_, Oct 06 2003