

A175286


Pisano period of the Jacobsthal sequence A001045 modulo n.


5



1, 1, 6, 2, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, 6, 10, 22, 6, 20, 12, 54, 6, 28, 12, 10, 2, 30, 8, 12, 18, 36, 18, 12, 4, 20, 6, 14, 10, 36, 22, 46, 6, 42, 20, 24, 12, 52, 54, 20, 6, 18, 28, 58, 12, 60, 10, 18, 2, 12, 30, 66, 8, 66, 12, 70, 18, 18, 36, 60, 18, 30, 12, 78, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..80.
Eric Weisstein's World of Mathematics, Pisano period.
Wikipedia, Pisano period.


EXAMPLE

Reading the sequence 0, 1, 1, 3, 5, 11, 21, ... modulo n=3, we get 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, ... = A088689, which has a period (1, 1, 0, 2, 2, 0) of length a(n=3) = 6.


CROSSREFS

Cf. A001045, A001175, A088689, A175181.
Sequence in context: A173273 A084945 A010493 * A061496 A125115 A202244
Adjacent sequences: A175283 A175284 A175285 * A175287 A175288 A175289


KEYWORD

nonn


AUTHOR

R. J. Mathar, Mar 21 2010


STATUS

approved



