login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278070
a(n) = hypergeometric([n, -n], [], -1).
6
1, 2, 11, 106, 1457, 25946, 566827, 14665106, 438351041, 14862109042, 563501581931, 23624177026682, 1085079390005041, 54185293223976266, 2922842896378005707, 169366580127359119906, 10492171932362920604417, 691986726674000405367266, 48408260338825019327539531
OFFSET
0,2
COMMENTS
From Peter Bala, Mar 12 2023: (Start)
We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 1, 1, 4, 2, 1, 2, 4, 1, 1, 4, 2, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x))*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1/(1 - x), G(x) = 1. Cf. A361281. (End)
LINKS
FORMULA
a(-n) = a(n).
a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x).
a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2.
a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Nov 10 2016
a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - Vladimir Kruchinin, Nov 23 2016
a(n) = n! * [x^n] exp(x)/(1 - x)^n. - Ilya Gutkovskiy, Sep 21 2017
MAPLE
a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18);
# Alternatively:
a := proc(n) option remember; `if`(n<2, n+1,
((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end:
seq(a(n), n=0..18);
MATHEMATICA
Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
PROG
(Sage)
def a():
a, b, c, d, h, e = 1, 2, 1, 8, 4, 0
yield a
while True:
yield b
e = c; c += 2
a, b = b, (c*a + h*b)//e
d += 16; h += d
A278070 = a()
[next(A278070) for _ in range(19)]
(Maxima)
a(n):=n!*sum(binomial(2*n-i-1, n-i)/i!, i, 0, n); /* Vladimir Kruchinin, Nov 23 2016 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Nov 10 2016
STATUS
approved