login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278070 a(n) = hypergeometric([n, -n], [], -1). 5
1, 2, 11, 106, 1457, 25946, 566827, 14665106, 438351041, 14862109042, 563501581931, 23624177026682, 1085079390005041, 54185293223976266, 2922842896378005707, 169366580127359119906, 10492171932362920604417, 691986726674000405367266, 48408260338825019327539531 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From Peter Bala, March 12 2023: (Start)

We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 1, 1, 4, 2, 1, 2, 4, 1, 1, 4, 2, ...], apparently a periodic sequence of period 7.

More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x))*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1/(1 - x), G(x) = 1. Cf. A361281. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..370

FORMULA

a(-n) = a(n).

a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x).

a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2.

a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Nov 10 2016

a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - Vladimir Kruchinin, Nov 23 2016

a(n) = n! * [x^n] exp(x)/(1 - x)^n. - Ilya Gutkovskiy, Sep 21 2017

MAPLE

a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18);

# Alternatively:

a := proc(n) option remember; `if`(n<2, n+1,

((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end:

seq(a(n), n=0..18);

MATHEMATICA

Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)

PROG

(Sage)

def a():

a, b, c, d, h, e = 1, 2, 1, 8, 4, 0

yield a

while True:

yield b

e = c; c += 2

a, b = b, (c*a + h*b)//e

d += 16; h += d

A278070 = a()

[next(A278070) for _ in range(19)]

(Maxima)

a(n):=n!*sum(binomial(2*n-i-1, n-i)/i!, i, 0, n); /* Vladimir Kruchinin, Nov 23 2016 */

CROSSREFS

Cf. A278069, A278071, A361281.

Sequence in context: A268294 A207571 A351331 * A292428 A088690 A118805

Adjacent sequences: A278067 A278068 A278069 * A278071 A278072 A278073

KEYWORD

nonn,easy

AUTHOR

Peter Luschny, Nov 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 21:40 EDT 2023. Contains 361673 sequences. (Running on oeis4.)