login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278071
Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.
2
1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
OFFSET
0,4
LINKS
H. L. Krall and O. Fink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
Herbert E. Salzer, Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).
FORMULA
The P(n,x) are orthogonal polynomials. They satisfy the recurrence
P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.
In terms of generalized Laguerre polynomials (see the Krall and Fink link):
P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).
EXAMPLE
Triangle starts:
. 1,
. 1, -1,
. 6, -4, 1,
. 60, -36, 9, -1,
. 840, -480, 120, -16, 1,
. 15120, -8400, 2100, -300, 25, -1,
. 332640, -181440, 45360, -6720, 630, -36, 1,
...
MAPLE
p := n -> (-1)^n*hypergeom([n, -n], [], x):
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
# Alternatively the polynomials by recurrence:
P := proc(n, x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
((((4*n-2)*(2*n-3)*x+2)*P(n-1, x)+(2*n-1)*P(n-2, x))/(2*n-3));
sort(expand(%)) end: for n from 0 to 6 do lprint(P(n, x)) od;
# Or by generalized Laguerre polynomials:
P := (n, x) -> n!*(-x)^n*LaguerreL(n, -2*n, -1/x):
for n from 0 to 6 do simplify(P(n, x)) od;
MATHEMATICA
row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
(* T(n, k)= *) t={}; For[n=8, n>-1, n--, For[j=n+1, j>0, j--, PrependTo[t, (-1)^(j-n+1-Mod[n, 2])*Product[(2*n-k)*k/(n-k+1), {k, j, n}]]]]; t (* Detlef Meya, Aug 02 2023 *)
CROSSREFS
Cf. A278069 (x=1, row sums up to sign), A278070 (x=-1).
T(n,0) = Pochhammer(n, n) (cf. A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf. A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf. A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf. A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf. A083374).
Sequence in context: A360984 A378418 A166905 * A362191 A362202 A132870
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Nov 10 2016
STATUS
approved