login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.
2

%I #27 Sep 03 2023 10:12:36

%S 1,1,-1,6,-4,1,60,-36,9,-1,840,-480,120,-16,1,15120,-8400,2100,-300,

%T 25,-1,332640,-181440,45360,-6720,630,-36,1,8648640,-4656960,1164240,

%U -176400,17640,-1176,49,-1,259459200,-138378240,34594560,-5322240,554400,-40320,2016,-64,1

%N Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.

%H H. L. Krall and O. Fink, <a href="https://doi.org/10.1090/S0002-9947-1949-0028473-1">A New Class of Orthogonal Polynomials: The Bessel Polynomials</a>, Trans. Amer. Math. Soc. 65, 100-115, 1949.

%H Herbert E. Salzer, <a href="https://doi.org/10.1090/S0025-5718-1955-0078498-1">Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms</a>, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).

%F The P(n,x) are orthogonal polynomials. They satisfy the recurrence

%F P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.

%F In terms of generalized Laguerre polynomials (see the Krall and Fink link):

%F P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).

%e Triangle starts:

%e . 1,

%e . 1, -1,

%e . 6, -4, 1,

%e . 60, -36, 9, -1,

%e . 840, -480, 120, -16, 1,

%e . 15120, -8400, 2100, -300, 25, -1,

%e . 332640, -181440, 45360, -6720, 630, -36, 1,

%e ...

%p p := n -> (-1)^n*hypergeom([n, -n], [], x):

%p ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);

%p # Alternatively the polynomials by recurrence:

%p P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;

%p ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));

%p sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;

%p # Or by generalized Laguerre polynomials:

%p P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):

%p for n from 0 to 6 do simplify(P(n,x)) od;

%t row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;

%t Table[row[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Jul 12 2019 *)

%t (* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* _Detlef Meya_, Aug 02 2023 *)

%Y Cf. A278069 (x=1, row sums up to sign), A278070 (x=-1).

%Y T(n,0) = Pochhammer(n, n) (cf. A000407).

%Y T(n,1) = -(n+1)*(2n)!/n! (cf. A002690).

%Y T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf. A002691).

%Y T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf. A000290).

%Y T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf. A083374).

%K sign,tabl

%O 0,4

%A _Peter Luschny_, Nov 10 2016