OFFSET
0,6
FORMULA
E.g.f.: 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)), nonzero terms.
EXAMPLE
Triangle begins:
[1]
[0, 1]
[0, 1, 20]
[0, 1, 168, 1680]
[0, 1, 1364, 55440, 369600]
[0, 1, 10920, 1561560, 33633600, 168168000]
MAPLE
P := proc(m, n) option remember; if n = 0 then 1 else
add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(3, n), x) od;
# Alternatively:
A278073_row := proc(n)
1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1));
expand(series(%, x, 3*n+1)); (3*n)!*coeff(%, x, 3*n);
PolynomialTools:-CoefficientList(%, t) end:
for n from 0 to 6 do A278073_row(n) od;
MATHEMATICA
With[{m = 3}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 21, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
PROG
(Sage)
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(30)
@cached_function
def P(m, n):
if n == 0: return R(1)
return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
def A278073_row(n): return list(P(3, n))
for n in (0..6): print(A278073_row(n)) # Peter Luschny, Mar 24 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 22 2017
STATUS
approved