login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365912
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+3) / (5*k+3)! ).
3
1, 0, 0, 1, 0, 0, 20, 0, 1, 1680, 0, 330, 369600, 1, 180180, 168168000, 13990, 163363200, 137225088001, 39041010, 232792560000, 182509367449640, 118574979600, 494730748512001, 369398970833730090, 451334037000000, 1500683270499930350, 1080492079984609149000
OFFSET
0,7
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/5)} binomial(n,5*k+3) * a(n-5*k-3).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+3)/(5*k+3)!))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved