The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102233 Number of preferential arrangements of n labeled elements when at least k=3 elements per rank are required. 11
 1, 0, 0, 1, 1, 1, 21, 71, 183, 2101, 13513, 64285, 629949, 5762615, 41992107, 427215283, 4789958371, 47283346849, 540921904725, 6980052633257, 85901272312905, 1129338979629643, 16398293425501375, 238339738265039119, 3588600147767147775, 58124879519314730741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS The labeled case for at least k=2 elements per rank is given by A032032 = Partition n labeled elements into sets of sizes of at least 2 and order the sets. The unlabeled case for at least k=3 elements per rank is given by A000930 = A Lamé sequence of higher order. The unlabeled case for at least k=2 elements per rank is given by A000045 = Fibonacci numbers. With m = floor(n/3), a(n) is the number of ways to distribute n different toys to m numbered children such that each child receiving a toy gets at least three toys and, if child k gets no toys, then each child numbered higher than k also gets no toys. Furthermore, a(n)= row sums of triangle A200092 for n>=3. - Dennis P. Walsh, Apr 15 2013 Row sums of triangle A200092. - Dennis P. Walsh, Apr 15 2013 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..400 Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013. I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1. FORMULA E.g.f.: 1-(z^2-2*exp(z)+2+2*z)/(4-2*exp(z)+2*z+z^2). a(n) = n! * sum(m=1..n, sum(k=0..m, k!*(-1)^(m-k) *binomial(m,k) *sum(i=0..n-m, stirling2(i+k,k) *binomial(m-k,n-m-i) *2^(-n+m+i) /(i+k)!))); a(0)=1. - Vladimir Kruchinin, Feb 01 2011 a(n) ~ 2*n!/((2+r^2)*r^(n+1)), where r = 1.56811999239... is the root of the equation 4+2*r+r^2 = 2*exp(r). - Vaclav Kotesovec, Sep 29 2013 a(0) = 1; a(n) = Sum_{k=3..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020 EXAMPLE Let 1,2,3,4,5,6 denote six labeled elements. Let | denote a separation between two ranks. E.g., if elements 1,2 and 3 are on rank (also called level) one and elements 3,4 and 5 are on rank two, then we have the ranking 123|456. For n=9 we have a(9)=2101 rankings. The order within a rank does not count. Six examples are: 123|456|789; 123456789; 12345|6789; 129|345678; 1235|46789; 789|123456. MAPLE seq (n! *coeff (series (1- (z^2-2*exp(z)+2+2*z) /(4-2*exp(z)+2*z+z^2), z=0, n+1), z, n), n=0..30); with(combstruct): SeqSetL := [S, {S=Sequence(U), U=Set(Z, card >= 3)}, labeled]: seq(count(SeqSetL, size=j), j=0..23); # Zerinvary Lajos, Oct 19 2006 # third Maple program: b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=3..n)) end: a:= n-> n!*b(n): seq(a(n), n=0..30); # Alois P. Heinz, Jul 29 2014 MATHEMATICA CoefficientList[Series[1-(x^2-2*E^x+2+2*x)/(4-2*E^x+2*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *) b[n_] := b[n] = If[n==0, 1, Sum[b[n-j]/j!, {j, 3, n}]]; a[n_] := n!*b[n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016, after Alois P. Heinz *) PROG (PARI) z='z+O('z^66); Vec(serlaplace( 1-(z^2-2*exp(z)+2+2*z) / (4-2*exp(z)+2*z+z^2) ) ) \\ Joerg Arndt, Apr 16 2013 CROSSREFS Cf. A000640, A102232, A032032, A232475. Cf. column k=3 of A245732. Sequence in context: A044540 A195026 A296035 * A309903 A187719 A156285 Adjacent sequences: A102230 A102231 A102232 * A102234 A102235 A102236 KEYWORD nonn AUTHOR Thomas Wieder, Jan 01 2005 EXTENSIONS a(0) changed to 1 at the suggestion of Zerinvary Lajos, Oct 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 17:32 EDT 2024. Contains 374459 sequences. (Running on oeis4.)