login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365909
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+2) / (5*k+2)! ).
2
1, 0, 1, 0, 6, 0, 90, 1, 2520, 72, 113400, 5940, 7484401, 617760, 681084014, 81081000, 81730916280, 13232419201, 12505020896160, 2639867731518, 2376002176470000, 633568693965570, 548870403972290401, 180329793856173720, 151492831528555510516
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/5)} binomial(n,5*k+2) * a(n-5*k-2).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+2)/(5*k+2)!))))
CROSSREFS
Cf. A365419.
Sequence in context: A156488 A057399 A245086 * A145223 A365979 A219948
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved