login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145223
a(n) is the number of odd permutations (of an n-set) with exactly 2 fixed points.
3
0, 0, 6, 0, 90, 420, 3780, 33264, 333900, 3670920, 44054010, 572697840, 8017775766, 120266628300, 1924266063720, 32712523068960, 588825415259640, 11187682889909904, 223753657798227150, 4698826813762734240, 103374189902780197170, 2377606367763944481780
OFFSET
2,3
LINKS
Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
FORMULA
a(n) = A145225(n,2) = (n*(n-1)/2) * A000387(n-2), (n > 1).
E.g.f.: x^4*exp(-x)/(4*(1-x)).
D-finite with recurrence +(-n+6)*a(n) +(n-2)*(n-7)*a(n-1) +(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
EXAMPLE
a(4) = 6 because there are exactly 6 odd permutations (of a 4-set) having 2 fixed points, namely: (12), (13), (14), (23), (24), (34).
MAPLE
egf:= x^4 * exp(-x)/(4*(1-x));
a:= n-> n! * coeff(series(egf, x, n+1), x, n):
seq(a(n), n=2..30); # Alois P. Heinz, Feb 01 2011
PROG
(PARI) x = 'x + O('x^30); Vec(serlaplace(((x^4)*exp(-x))/(4*(1-x)))) \\ Michel Marcus, Apr 04 2016
CROSSREFS
Cf. A000387 (odd permutations with no fixed points), A145222 (odd permutations with exactly 1 fixed point), A145220 (even permutations with exactly 2 fixed points).
Sequence in context: A057399 A245086 A365909 * A365979 A219948 A072129
KEYWORD
nonn
AUTHOR
Abdullahi Umar, Oct 09 2008
EXTENSIONS
More terms from Alois P. Heinz, Feb 01 2011
STATUS
approved