login
A145224
Triangle read by rows: T(n,k) is the number of even permutations (of an n-set) with exactly k fixed points.
3
1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 8, 0, 0, 1, 24, 15, 20, 0, 0, 1, 130, 144, 45, 40, 0, 0, 1, 930, 910, 504, 105, 70, 0, 0, 1, 7413, 7440, 3640, 1344, 210, 112, 0, 0, 1, 66752, 66717, 33480, 10920, 3024, 378, 168, 0, 0, 1
OFFSET
0,7
LINKS
Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
FORMULA
T(n,k) = C(n,k)*A003221(n-k).
E.g.f.: (x^k(1-x^2/2) e^(-x))/k!(1-x).
T(n,k) + A145225(n,k) = A008290(n,k). - R. J. Mathar, Jul 06 2023
T(n,k) = (A008290(n,k) + A055137(n,k))/2. - Julian Hatfield Iacoponi, Aug 08 2024
EXAMPLE
Triangle starts:
1;
0, 1;
0, 0, 1;
2, 0, 0, 1;
3, 8, 0, 0, 1;
24, 15, 20, 0, 0, 1;
...
CROSSREFS
Row sums give A001710.
Columns k=0..2 are A003221, A145219, A145220.
Sequence in context: A373183 A351776 A259784 * A138157 A342243 A073429
KEYWORD
nonn,tabl
AUTHOR
Abdullahi Umar, Oct 09 2008
STATUS
approved